The current through a resistor is in direct proportion to the voltage across the resistor's terminals. This relationship is represented byOhm's law:
where I is the current through the conductor in units of amperes, V is the potential difference measured across the conductor in units ofvolts, and R is the resistance of the conductor in units of ohms.
The ratio of the voltage applied across a resistor's terminals to the intensity of current in the circuit is called its resistance, and this can be assumed to be a constant (independent of the voltage) for ordinary resistors working within their ratings.
Resistors are common elements of electrical networks and electronic circuits and are ubiquitous in electronic equipment. Practical resistors can be made of various compounds and films, as well as resistance wire (wire made of a high-resistivity alloy, such as nickel-chrome). Resistors are also implemented within integrated circuits, particularly analog devices, and can also be integrated into hybridand printed circuits.
Practical resistors have a series inductance and a small parallel capacitance; these specifications can be important in high-frequency applications. In a low-noise amplifier or pre-amp, the noise characteristics of a resistor may be an issue. The unwanted inductance, excess noise, and temperature coefficient are mainly dependent on the technology used in manufacturing the resistor. They are not normally specified individually for a particular family of resistors manufactured using a particular technology.[1] A family of discrete resistors is also characterized according to its form factor, that is, the size of the device and the position of its leads (or terminals) which is relevant in the practical manufacturing of circuits using them.
Resistor | |
---|---|
A typical axial-lead resistor | |
Type | Passive |
Working principle | Electric resistance |
Electronic symbol | |
0 komentar:
Posting Komentar